skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Shivani P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. Over the past few years, theR-Process Alliance (RPA) has successfully carried out a search for stars that are highly enhanced in elements produced via the rapid neutron-capture (r-) process. In particular, the RPA has identified a number of relatively bright, highlyr-process-enhanced (r-II) stars, suitable for observations with the Hubble Space Telescope (HST), facilitating abundance derivation of elements such as gold (Au) and cadmium (Cd). Aims. This paper presents the detailed abundances derived for the metal-poor ([Fe/H] = −2.55) highlyr-process-enhanced ([Eu/Fe] = +1.29)r-II star 2MASS J05383296–5904280. Methods. One-dimensional local thermodynamic equilibrium (LTE) elemental abundances were derived via equivalent width and spectral synthesis using high-resolution high signal-to-noise near-UV HST/STIS and optical Magellan/MIKE spectra. Results. Abundances were determined for 43 elements, including 26 neutron-capture elements. In particular, abundances of the rarely studied elements Nb, Mo, Cd, Lu, Os, Pt, and Au are derived from the HST spectrum. These results, combined with RPA near-UV observations of two additionalr-II stars, increase the number of Cd abundances derived forr-process-enriched stars from seven to ten and Au abundances from four to seven. A large star-to-star scatter is detected for both of these elements, highlighting the need for more detections enabling further investigations, specifically into possible non-LTE effects. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract Understanding the abundance pattern of metal-poor stars and the production of heavy elements through various nucleosynthesis processes offers crucial insights into the chemical evolution of the Milky Way, revealing primary sites and major sources of rapid neutron-capture process (r-process) material in the Universe. In this fifth data release from theR-Process Alliance (RPA), we present the detailed chemical abundances of 41 faint (down toV= 15.8) and extremely metal-poor (down to [Fe/H] = −3.3) halo stars selected from the RPA. We obtained high-resolution spectra for these objects with the HORuS spectrograph on the Gran Telescopio Canarias. We measure the abundances of light,α, Fe-peak, and neutron-capture elements. We report the discovery of five carbon-enhanced metal-poor, one limited-r, threer-I, and fourr-II stars, and six Mg-poor stars. We also identify one star of a possible globular cluster origin at an extremely low metallicity at [Fe/H] = −3.0. This adds to the growing evidence of a lower-limit metallicity floor for globular cluster abundances. We use the abundances of Fe-peak elements and theα-elements to investigate the contributions from different nucleosynthesis channels in the progenitor supernovae. We find the distribution of [Mg/Eu] as a function of [Fe/H] to have different enrichment levels, indicating different possible pathways and sites of their production. We also reveal differences in the trends of the neutron-capture element abundances of Sr, Ba, and Eu of variousr-I andr-II stars from the RPA data releases, which provide constraints on their nucleosynthesis sites and subsequent evolution. 
    more » « less
  3. ABSTRACT We present a detailed chemical-abundance analysis of a highly r-process-enhanced (RPE) star, 2MASS J00512646-1053170, using high-resolution spectroscopic observations with Hubble Space Telescope/STIS in the UV and Magellan/MIKE in the optical. We determined abundances for 41 elements in total, including 23 r-process elements and rarely probed species such as Al ii, Ge i, Mo ii, Cd i, Os ii, Pt i, and Au i. We find that [Ge/Fe] = +0.10, which is an unusually high Ge enhancement for such a metal-poor star and indicates contribution from a production mechanism decoupled from that of Fe. We also find that this star has the highest Cd abundance observed for a metal-poor star to date. We find that the dispersion in the Cd abundances of metal-poor stars can be explained by the correlation of Cd i abundances with the stellar parameters of the stars, indicating the presence of NLTE effects. We also report that this star is now only the sixth star with Au abundance determined. This result, along with abundances of Pt and Os, uphold the case for the extension of the universal r-process pattern to the third r-process peak and to Au. This study adds to the sparse but growing number of RPE stars with extensive chemical-abundance inventories and highlights the need for not only more abundance determinations of these rarely probed species, but also advances in theoretical NLTE and astrophysical studies to reliably understand the origin of r-process elements. 
    more » « less
  4. Abstract The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar-evolution models. The uranium abundance, which can be determined for metal-poorr-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used asingleUiiline atλ3859 Å. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel Uiilines atλ4050 Å andλ4090 Å, in addition to the canonicalλ3859 Å line. We find that the Uiilines atλ4050 Å andλ4090 Å are reliable and render U abundances in agreement with theλ3859 U abundance, for all of the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2–002333, HE 1523–0901, and CS 31082–001, using multiple Uiilines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early universe, especially ofr-process elements. 
    more » « less
  5. Abstract Stars that formed with an initial mass of over 50Mare very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50M, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys. 
    more » « less